Cervical Spine Surgery –
For Patients with Rheumatoid Arthritis

Wayne Cheng, MD.

Bones and Spine
Outline

- The most common abnormalities.
- Clinical Presentation.
- Radiological Evaluation.
- Natural History.
- Predictor of progression and recovery.
- Indication for surgery
- Surgical Considerations
Incidence

- RA affects **1%** of adult population in US.
- C-spine is the **second** most common skeletal manifestation (15-86%).
- Up to **26%** of in-patients with RA may need surgical intervention.
- Three most common abnormalities:
 - 1. AAS
 - 2. AAI
 - 3. SAS
Atlantoaxial Subluxation (AAS)

- Most common
 - (43 - 86%)
- Transverse ligament.
- Ant, lateral, posterior.
Atlantoaxial Impaction

- Second most frequent
 - (5-34%)
- Other names
 - Basilar invagination
 - Cranial settling
 - Vertical subluxation
 - Superior migration.
- Joint incompetent: Result from bone and cartilage loss.
- Impinge on the brain stem.
Subaxial Subluxation

♦ 10-25%.
♦ Most frequent:
 – C23, C34.
♦ Incompetent ligaments, facets.
♦ “Staircase”
Clinical Presentation

- **#1**: Pain (40-88%)
- **#2**: Neuro (7-34%)
- **#3**: Sudden death (10%)

Earliest signs
- Pain & neck stiffness

High index of suspicion
- Change in ambulation.
- Long tract sign.
- Vertebrobasilar SX.
 - Loss of equilibrium
 - Tennitus, vertigo, diplopia
 - Visual disturbances
Sudden Death in RA

- **Post mortem study** - 11 consecutive cases of atlanto-axial dislocation (104 patients total).
- **Sudden death**
 - 7 out 11
- **Correct diagnosis**
 - 2 out 11
- **Spastic SX**
 - only in 4/11 patients.
- **Conclusion:**
 - 1. 10% incidence of fatal medulla compression.
 - 2. Neurological signs are not helpful to point out the risk of fatal cord compression.

Miculowski et al., Acta Med. Scand, 1975
Ranawat Classification

- I No neural deficit.
- II Subjective weakness/dysesthesia
- III Objective weakness/long-tract signs.
 - IIIA ambulatory
 - IIIB not ambulatory

Ranawat et al, JBJS 1979 Vol 61A-7
Radiological Eval - AAS

- Need flexion lateral.
- Normal is 3mm.
- >10 – 12 mm = complete disruption.
- Not reliable – May decrease as odontoid moves superiorly.
Radiologic Eval - AAS

- PADI
- >14 mm = 94% negative predictive value.
- Different than space available for the cord.
Radiologic Eval – AAS MRI
neutral vs. flexion
Radiologic Eval - AAI

- Ranawat’s distance -
 - distance between transverse axis of C1 and middle of pedicle of C2.

- Abnormal if:
 - Male < 15mm.
 - Female < 13 mm.
Radiologic Eval. - AAI

- McGregor’s line.
- Line from hard palate to occipit.
- Abnormal if dens > 4.5mm above the line.
Radiologic Eval - AAI

- Redlund-Johnell
- Distance between McGregor’s line and inferior end plate of C2.
- Abnormal if male < 34 mm and female < 29mm.
Radiologic Eval - AAI

- Clark Station
- Divide C2 into thirds on sagittal plan.
- Abnormal if the middle or lower third of C2 is at the level of arch of C1.
Radiologic Eval - AAI

- **The most specific:**
 Redlund-Johnell (76%)

- **The most sensitive:**
 Clark Station (83%)

- **To achieve > 90% sensitivity + specificity**
 - Use combination of Clark station + Redlund-Johnell + Ranawat

- **When in doubt**
 - get a MRI.

Riew et al. JBJS 83A(2). 2001
Natural History

- Without cervical myelopathy
- With Cervical myelopathy.
Natural History – without myelopathy

- Prospective Study of 106 patients over 5 years.
- 80% had radiographic progression.
- 36% had neurologic deterioration.
- Only 10% required surgery.

Pellicci et al. JBJS 63A(3) 1981
Natural History – with myelopathy

- **Sunahara**, Spine 22(22), 1997
 - 21 pt with AAS, refused surgery.
 - All patients bedridden within 3 years.
 - 7 patients had sudden death.

- **Meijers**, Clinical and Exp Rheu, 1984
 - 9 patients.
 - All 9 patients died within a year.
 - 4 due to consequences of cord compression.
Natural History

- Without cervical myelopathy
 - Good

- With Cervical myelopathy.
 - Bad

Predictor
Predictor of Paralysis

- PADI < 14mm.
- Cervicomedullary angle less than 135 degree.
- SAC < 13 mm on MRI
- Cord diameter < 6 mm.
Predictor of Recovery

Boden:
- No recovery if PADI < 10mm.
- At least one neuro. Class improvement if PADI > 10 mm.

Klein:
- Duration of SX.

Casey:
- Pre-op neuro. Function, cord area, degree of AAI.
Indications for Surgery

◆ **Accepted:**
 – Intractable pain.
 – Progressive neurologic impairment.
 – Presence of myelopathy

◆ **Controversial:**
 – Impending neurologic deficit.
 • Arguments for and against.
Surgical Consideration

- Frail.
- Malnourished.
- Osteoporotic.
- Immunosuppressed.
Preoperative Cervical Traction

- Used for AAI and severe subluxation.
- Goal: reduce subluxation and relieve compression.
- Advantages.
Airway Management

- Awake fiberoptic-assisted intubation Vs. traditional.
- 128 patients with RA.
- Upper-airway obstruction after extubation decrease from 14% to 1%.

Wattenmaker et al. JBJS 76-A(3), 1994
Decompression

- Persistent neurologic deficit despite traction.
- Level depend on location – of cord impingement.
- Controversial.
Stabilization

Include all unstable levels.
Complication
Complication
Complication
Surgical Outcomes

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>#patients</th>
<th>Pain relief%</th>
<th>Neuro. Improv %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Asselt</td>
<td>31</td>
<td>62%</td>
<td>67%</td>
</tr>
<tr>
<td>1999</td>
<td>Grob</td>
<td>39</td>
<td>96</td>
<td>77</td>
</tr>
<tr>
<td>1998</td>
<td>Eyres</td>
<td>26</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>1998</td>
<td>Mori</td>
<td>25</td>
<td>96</td>
<td>67</td>
</tr>
<tr>
<td>1989</td>
<td>Clark</td>
<td>41</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>1987</td>
<td>Sakou</td>
<td>16</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1985</td>
<td>Menezes</td>
<td>45</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
CONCLUSION

- High index of suspicion
- Majority of RA does not require surgery.
- Surgical indication:
 - Intractable pain
 - Progressive neurologic deficit
 - Myelopathy
 - Impending neurologic deficit?
- Careful surgical planning/team approach.
THANK YOU