Development of Fuel Economy Standards for Light Duty Vehicles in Sri Lanka

Thusitha Sugathapala
Department of Mechanical Engineering
University of Moratuwa
10th June 2016
AN OVERVIEW

Transport Sector in Sri Lanka

- Dominated by road transport
- 110 billion passenger-km/yr
 - 95.0% road; 5.0% rail
- 7 million ton-km per year
 - 97.5% road; 2.0% rail; 0.5% water

Road Transport:

- Active fleet: 4.5 Million

- Annual fuel consumption: 2.7 million tons
- Average fuel economy: 0.025 litre/passenger-km
FUEL ECONOMY OF ROAD TRANSPORT

- Local Initiatives
 - Main interventions so far are primarily related to mitigation of air emission
 - Vehicle Emission Testing Programme
 - Fuel Quality Improvements
 - Fiscal measures.
 - Energy Efficiency / Fuel Economy
 - Awareness & education / Eco-driving
 - Baseline data collection (in progress)
 - Development of driving cycle (in progress)
 - Fuel economy labeling (proposed).
 - Technology shift in LDVs
 - Hybrid/Electric vehicles
 - Integrated EV to Solar PV (net metering)
 - Conversion of ICE to electric/hybrid (pilot testing).

Key Interventions proposed within urban development programs:
- Mass transit: BRT / Monorail
- Railway electrification
- NMT

Yet, the private vehicles would have dominant influence on the performance of the transport sector for the years to come.
FUEL ECONOMY OF ROAD TRANSPORT

- Local Initiatives
 - Emergence of Hybrid/Electric Vehicles
FUEL ECONOMY OF LDVs

Scope:

- Objective is to establish a baseline for the fuel economy of new passenger cars in the country
 - develop strategies and implement vehicle fuel economy policies,
 - supporting the regional and global tracking of the fuel economy performance towards 50by50 target set by GFEI.

Methodology: Main Steps – GFEI

Step 1: Establish the baseline year.

Step 2: Establish the data points that are required to collect for the estimation of a robust baseline.

Step 3: Find and evaluate available new car registration data sources.

Step 4: Calculate the average fuel economy and other characteristics for newly registered vehicles in the baseline year.

Step 5: Repeat the same exercise using uniform methodology at regular intervals (to derive annual average variations).
FUEL ECONOMY OF LDVs

- Methodology: Estimation of FE / GHG Emissions

 - Reported in international databases/ Manufacturers data:
 - Based on various test driving cycles (and different units)
 - Need to converted to a single test driving cycle (and same unit), for which conversion factors have been developed.

 - Units:
 - Fuel economy: l/100-km; mpg; MJ/km; km/l
 - GHG Emissions: gCO$_2$/km; gCO$_2$/mile

 - Driving cycles:
 - New European drive cycle (NEDC): EU, India, China, Australia
 - US Corporate Average Fuel Economy (US CAFE): US, Canada, South Korea, Mexico
 - JC08: Japan
 - World-wide Harmonized Light-duty Test Cycle (WLTC) is been developed.
FUEL ECONOMY OF LDVs

Methodology: Estimation of FE / GHG Emissions

Conversion formula:

[Adjusted fuel economy value] = [Original fuel economy value] × [Unit conversion] × [Test cycle multiplier].

Test cycle conversion factors:

<table>
<thead>
<tr>
<th>Conversion Factor</th>
<th>Test Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEDC-JC08</td>
</tr>
<tr>
<td>Test cycle multiplier (simple average)</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Source: ICCT, 2007

Unit conversions in fuel economy and GHG emissions:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Standard A</th>
<th>Standard B</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel economy</td>
<td>km/l</td>
<td>mpg</td>
<td>B = A × 2.35</td>
</tr>
<tr>
<td></td>
<td>l/100 km</td>
<td>mpg</td>
<td>B = 235.2/A</td>
</tr>
<tr>
<td></td>
<td>CO₂ g/km</td>
<td>mpg</td>
<td>B = 5469/A(1)</td>
</tr>
<tr>
<td>GHG emissions</td>
<td>km/l</td>
<td>CO₂ g/km</td>
<td>B = 2325/A</td>
</tr>
<tr>
<td></td>
<td>l/100 km</td>
<td>CO₂ g/km</td>
<td>B = A × 23.2</td>
</tr>
<tr>
<td></td>
<td>mpg</td>
<td>CO₂ g/km</td>
<td>B = 5469/A(1)</td>
</tr>
</tbody>
</table>

Notes: (1) For diesel vehicles, B = 6424/A to reflect the higher carbon content of diesel fuel.
Source: ICCT, 2007
FUEL ECONOMY OF LDVs

- Data Requirement
 - **Main Information:**
 - Vehicle make and model, and if possible configuration,
 - Model production year & Year of first registration,
 - Fuel type and Engine size,
 - Domestically produced or imported,
 - New or second hand import,
 - Rated fuel economy per model and test cycle basis,
 - Number of sales by model.
 - **Main Sources:**
 - Local – DMT, Vehicle Importers; VET Project Office
 - Global – Vehicle manufacturers; Fuel economy data bases.
 - **Sample (Random selection - VET database during a year)**
 - Sample size = 16,825 (73% Gasoline; 27% Diesel)
 - 45 makes.
FUEL ECONOMY OF LDVs

- Characteristics of the Vehicles
 - Engine Capacities - Yearly average:

```
Year | Average Engine Capacity (cc)
---- | ----------------------------
2012 | 1400
2013 | 1800
2014 | 1700
2015 | 1900
```
FUEL ECONOMY OF LDVs

- Characteristics of the Vehicles
 - Annual average fuel economy of cars:

 ![Graph showing annual average fuel economy of cars from 2011 to 2015.]

 - Without Hybrid: Average FE = 6.5 l/100-km (Global Average = 7.1 l/100-km)
 - With Hybrid: Average FE = 5.6 l/100-km (15% Reduction)
FUEL ECONOMY OF LDVs

- Characteristics of the Vehicles
 - Annual average GHG emissions of cars:

> Without Hybrid: Average GHG Emissions = 160 g CO₂/km
FUEL ECONOMY LABELING

- Main Steps
 - Establish a representative driving cycle
 - Determine cycle conversion factor
 - Design format of the fuel economy label
 - Set fuel economy benchmarks for the energy labeling.

Colombo Driving Cycle

Average Speed (km/h)

- Time Proportion for Idling: 20.5%
- Time Proportion for cruising: 12.8%
- Time Proportion for acceleration: 36.1%
- Time Proportion for Deceleration: 30.7%

Expected to accomplish by mid 2017
CONCLUSIONS

- Use of cars in the country is on the rise, so does the average engine capacity.
- Still the ICE technology dominates, though use of hybrid/electric vehicles are emerging (16% of active fleet, surpassing diesel).
- Annual average fuel economy and GHG emissions of ICE cars in Sri Lanka are about 6.5 l/100 km and 160 g/km of CO₂.
- Use of hybrid vehicles has improved the fuel economy by 15%, indicating considerable potential for further improvements.
- Fuel economy labelling is expected to improve the energy efficiency in the transport sector.
- Improving fuel economy of vehicles would play a major role within broader interventions in sustainable city programmes.

Acknowledgements
- United Nations Environment Programme (UNEP)
- Global Fuel Economy Initiative (GFEI)
- Clean Air Sri Lanka
- Asian Development Bank (ADB)