Analyzing Affordable Clean Energy Policy Choices in Bangladesh

Prepared for:
Asia Clean Energy Forum, 2015

June 18, 2015
Outline

• Introduction
 • Project Background
 • Need for Energy Policy Analysis

• Overview of the Power Sector Modeling Tool
 • Structure
 • Process

• Analytic Approach
 • Inputs
 • Outputs

• Application
 • Results

• Conclusion
Background

- **Catalyzing Clean Energy in Bangladesh (CCEB)**
 - 5-year program (2012-2017), ~US$15 MM, funded by USAID
 - Goal is to promote clean energy development
 - 5 areas of support, includes power sector improvements, energy efficiency, and clean cook stoves
 - Implemented by Deloitte (prime), ICF International (sub) and others
 - For more information - http://www.cleanenergy-bd.org/

- **ICF International** (www.icfi.com)
 - Provides professional services and technology solutions; founded in 1969
 - World-class domain expertise in energy, environment, transportation, health care, IT
 - Diverse client base – US Federal, state, local, commercial, international
 - Over 5,000 employees, ~$1B in revenue
 - 70 offices worldwide, HQ in Washington, DC metro area
Need for Energy Policy Analysis

- **Bangladesh faces significant challenges in electricity generation**
 - 10% annual growth rate in electricity demand projected for the foreseeable future
 - Goal is to provide electricity for all by 2021

- **Bangladesh also faces significant climatic challenges**
 - IPCC predicts significant loss of landmass due to sea level rise
 - Severe hit to agriculture due to changes in precipitation

- Are meeting the needs of both “mutually exclusive”?
 - Can we improve energy security and physical security simultaneously?

- Need data and tools to analyze these important questions
 - Tools created under CCEB are intended to inform these policy questions
Power Sector Policy Analysis Model (PSPAM)

- **Goal is to find mutually consistent energy development scenarios**
 - Options that meet the energy needs while lowering emissions
 - Added “co-benefit” will be improved air quality (reduced air pollution)

- **Analyze multiple “what-if” type national-level scenarios**
 - Assumptions about demand growth, fuel mix, power imports, etc.
 - Bottom-up accounting of power fleet GHG emissions

- **Provides impacts on multiple levels**
 - System costs, fuel requirements, generation mix, power prices, GHG emissions

- **Not a substitute for generation planning tools**
 - Supplements capacity planning needs, with a less rigorous scenario planning model, adequate for high-level policy discussions
OVERVIEW

PSPAM Development

Phase I: Design and Develop Tool
- Understand Needs/Capabilities
- Collect Data
- Develop Model

Output: PSPAM, v2.1

Phase II: Ongoing Training
- Analyse Scenarios
- Select Viable Scenarios

Output: PSPAM Updated with Refined Scenarios

Phase III: Moving Forward
- Produce Policy Papers

Output: Policy Papers to Enhance Power Sector Development Options
PSPAM Inputs

- Scenarios can be created by changing a variety of input parameters
 - Fuel prices
 - Technology costs and performance
 - Electricity demand
 - Plant efficiency (capacity factors)
 - Financial assumptions (capital charge rates, exchange rates, etc.)

- Inputs can be dynamically adjusted to reflect changing national and/or global conditions
 - Also allows for easy sensitivity analyses
 - Modeling period extends to 2030, consistent with other GOB modeling (but can be further extended)

- Model provides flexibility of combining different parameter values for potentially unlimited number of policy scenarios
PSPAM Outputs

- Results are mostly presented graphically
 - Easy to compare year-by-year variations

- Results focus on high-level impacts on power system
 - Generation types, costs, power prices, CO2 emissions
 - Goal is to aid in policy discussions, not to “predict” precise impacts
PSPAM Outputs

- Shows the undiscounted annual and cumulative costs for the scenario analyzed
 - Provides a quick way to compare costs across scenarios
Analyzing Policy Choices with PSPAM

- Current work focuses on setting up a series of scenarios in consultation with policymakers
 - Data obtained from various government entities
 - Data can be updated easily by policymakers in government
 - Results are mostly illustrative, intended to spur discussions on potential policy options
 - Important conclusions can be drawn by comparing results across scenarios

- Both demand and supply side options are being analyzed
 - Comparing trade-offs between investing in reducing demand vs. building new capacity
 - Optimum policy choices may include investing in both demand and supply
Representative Scenario Results

<table>
<thead>
<tr>
<th>Name of Scenario</th>
<th>2030 Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generation Cost (BDT/kWh)</td>
<td>CO2 Emissions (MMT)</td>
</tr>
<tr>
<td>MP fuel diversification with PSMP costs – RC¹</td>
<td>8.4</td>
<td>125</td>
</tr>
<tr>
<td>RC with updated fuel costs</td>
<td>8.83</td>
<td>125</td>
</tr>
<tr>
<td>RC with updated capital costs</td>
<td>8.7</td>
<td>125</td>
</tr>
<tr>
<td>Updated RC (fuel costs and capital costs)</td>
<td>9.13</td>
<td>125</td>
</tr>
<tr>
<td>Updated RC with demand side options</td>
<td>9.11</td>
<td>108</td>
</tr>
<tr>
<td>Updated RC with biomass co-firing for coal plants</td>
<td>8.88</td>
<td>105</td>
</tr>
<tr>
<td>Updated RC with liquid fuel replaced with LNG²</td>
<td>8.45</td>
<td>101</td>
</tr>
<tr>
<td>Updated RC with natural gas replaced with LNG³</td>
<td>10.36</td>
<td>104</td>
</tr>
<tr>
<td>Updated RC with cross border promotion</td>
<td>8.58</td>
<td>95</td>
</tr>
<tr>
<td>Hybrid – Low Hanging Fruit⁴</td>
<td>8.94</td>
<td>102</td>
</tr>
<tr>
<td>Hybrid – Longer term choices⁵</td>
<td>9.30</td>
<td>88</td>
</tr>
<tr>
<td>Updated RC with 100% coal</td>
<td>10.04</td>
<td>171</td>
</tr>
<tr>
<td>Updated RC with 100% NG</td>
<td>7.84</td>
<td>99</td>
</tr>
</tbody>
</table>

1. PSMP = Power System Master Plan, 2010; RC implies Reference Case
2. Assumes LNG price = $18/MMBtu
3. Assumes LNG price = $14/MMBtu
4. Assumes significant investments in technology upgrades to switch fuel (about one-third of the fuel costs); biomass fuel costs one-third of coal per unit of energy
5. Assumes significantly higher power imports at higher than current costs; increased investments in EE

BDT = Bangladesh Taka (US$ 1 = BDT 80)
Choosing Appropriate Policies

- Potentially promising clean energy options exist for Bangladesh
 - Choices that can reduce emissions cost effectively – “win-win”

- Certain options might be relatively easy to implement in short run
 - Fuel switching from liquid fuel (diesel, furnace oil) to liquefied natural gas (LNG)
 - Biomass co-firing at existing or new coal generation
 - Increasing cross border power imports under current arrangements (power purchase agreement)

- Some choices may require more long term view but are still effective in reducing emissions at comparable costs
 - Reducing load growth through electricity demand reduction measures
 - Investing in significantly higher power imports (e.g., investing in tapping hydro resources in Nepal, Bhutan)
Questions?

Bansari Saha
+1-617-250-4286
Bansari.Saha@icfi.com